Bilinear Fourier Restriction Theorems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilinear Fourier integral operator and its boundedness

We consider the bilinear Fourier integral operatorS(f, g)(x) =ZRdZRdei1(x,)ei2(x,)(x, , ) ˆ f()ˆg()d d,on modulation spaces. Our aim is to indicate this operator is well defined onS(Rd) and shall show the relationship between the bilinear operator and BFIO onmodulation spaces.

متن کامل

Bilinear Fourier Integral Operators

We study the boundedness of bilinear Fourier integral operators on products of Lebesgue spaces. These operators are obtained from the class of bilinear pseudodifferential operators of Coifman and Meyer via the introduction of an oscillatory factor containing a real-valued phase of five variables Φ(x, y1, y2, ξ1, ξ2) which is jointly homogeneous in the phase variables (ξ1, ξ2). For symbols of or...

متن کامل

Endpoint Bilinear Restriction Theorems for the Cone, and Some Sharp Null Form Estimates

for some integer k. In both cases we call 2 the frequency of the waves φ, ψ. Red and blue waves both solve the free wave equation, but propagate along different sets of characteristics. Note that blue waves are the time reversal of red waves. Also, these waves are automatically smooth thanks to the frequency localization. The vector valued formulation will be convenient for technical reasons. W...

متن کامل

Integral Restriction for Bilinear Operators

We consider the integral domain restriction operator TΩ for certain bilinear operator T . We obtain that if (s, p1, p2) satisfies 1 p1 + 1 p2 ≥ 2 min{1,s} and ‖T‖Lp1×Lp2→Ls < ∞, then ‖TΩ‖Lp1×Lp2→Ls < ∞. For some special domain Ω, this property holds for triplets (s, p1, p2) satisfying 1 p1 + 1 p2 > 1 min{1,s} . 2010 Mathematics Subject Classification: 42B25.

متن کامل

A Sharp Bilinear Restriction Estimate for Paraboloids

X iv :m at h/ 02 10 08 4v 2 [ m at h. C A ] 1 3 D ec 2 00 2 Abstract. Recently Wolff [28] obtained a sharp L2 bilinear restriction theorem for bounded subsets of the cone in general dimension. Here we adapt the argument of Wolff to also handle subsets of “elliptic surfaces” such as paraboloids. Except for an endpoint, this answers a conjecture of Machedon and Klainerman, and also improves upon ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fourier Analysis and Applications

سال: 2012

ISSN: 1069-5869,1531-5851

DOI: 10.1007/s00041-012-9230-9